MATH 215: LECTURE 4- MORE ON NUMBER THEORY

TOM BENHAMOU
UNIVERSITY OF ILLINOIS AT CHICAGO

The purpose of this lecture is to provide more advanced and complex proofs which appears in number theory.

1. Basic theorems in Number theorey

1.1. The division theorem. One of the most basic theorems in Number theory is the division theorem. It is an example of an existence and uniqueness theorem.

Remark 1.1. Uniqueness of a property means that there are no two distinct object with that property. So in order to prove uniqueness, we usually take two objects with the property and prove that they are not distinct i.e. they are equal.

Theorem 1.2. For any integers n, m, such that $m>0$ there exist unique integers r, q such that:

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

q is called the quotient and r is called the remainder.
Proof. Let n, m be integers and suppose that $m>0$. Proving existence and uniqueness are two different tasks, hence we split the proof into two parts:
(1) Existance: We want to prove that there exist natural numbers k, r such that $n=k m+r$ and $0 \leq r<m$. For this, consider the set $S=\{n-a m \mid a \in \mathbb{Z}$, and $n-a m \geq 0\}$. Clearly $S \subseteq \mathbb{N}$, and we claim that $S \neq \emptyset$.
(a) If $n \geq 0$, then for $a=0$ we hanve that $n=n-a m \in S$, hence $S \neq \emptyset$.
(b) If $n<0$, we let $a=n$. Since $m \geq 1$, we conclude that $1-m \leq 0$ and:

$$
n-a m=n-n m=n(1-m) \geq 0
$$

So $n-a m \in S$ and $S \neq \emptyset$.
Now we need to use the feature of the natural numbers we discussed in the previous chapter, that every non-empty set of natural numbers has a minimal element. Denote by $r=\min (S)$. In particular $r \in S$ so there is q such that $n-q m=r$ and $n=q m+r$. We still need to prove that $0 \leq r<m$. Since $r \in S \subseteq \mathbb{N}$, we have that $r \geq 0$.

[^0]To see that $r<m$, suppose toward a contradiction that $r \geq m$ and denote by $r^{\prime}=r-m$. Then $r>r^{\prime} \geq 0$, since $r \geq m \geq 0$. Also $r^{\prime}=r-m=n-q m-m=n-(q+1) m$, hence $r^{\prime} \in S$. This is a contradiction to the minimality of r.
(2) Uniqueness: To prove uniqueness we assume that r_{0}, q_{0} and r_{1}, q_{1} both satisfy the property of the theorem, namely

$$
n=q_{0} m+r_{0}, n=q_{1} m+r_{1}, 0 \leq r_{0}, r_{1}<m
$$

and we need to prove that $q_{0}=q_{1}, r_{0}=r_{1}$. we conclude that $q_{0} m+r_{0}=q_{1} m+r_{1}$ Let us split into cases:
(a) If $r_{0} \leq r_{1}$, then $\left(q_{0}-q_{1}\right) m=r_{1}-r_{0} \geq 0$. Now $0 \leq r_{1}-r_{0}<m$ and therefore $q_{0}-q_{1}$ must be a natural number. Assume toward a contradiction the $q_{0}-q_{1} \geq 1$, then $m>r_{1}-r_{0}=\left(q_{0}-q_{1}\right) m \geq$ m, contradiction. Hence $q_{0}-q_{1}=0$ and $q_{0}=q_{1}$. Also we conclude that $r_{1}-r_{0}=0$ and therefore $r_{1}=r_{0}$.
(b) The case $r_{1} \leq r_{0}$ is symmetric. ${ }^{1}$

Definition 1.3. Let n be any integer and $m>0$. We denote by $n \bmod m$ the remainder $0 \leq r<m$ of the division of n by m.

Definition 1.4. We say that n_{1} and n_{2} are congruent modulo m if

$$
n_{1} \quad \bmod m=n_{2} \quad \bmod m
$$

and we denote this by $n_{1} \equiv n_{2} \bmod m$.
Exercise. Prove the following statements:
(1) For any integers n_{1}, n_{2} and $m>0 n_{1} \equiv n_{2} \bmod m$ if and only if $n_{1}-n_{2}$ is divisible by m.
(2) For every integers n and $m>0, n \equiv(n \bmod m) \bmod m$
1.1.1. Greatest common divisor. Among the most useful definitions in number theory is the definition of the greatest common divisor of two integers:

Definition 1.5. Let $n_{1}, n_{2} \in \mathbb{Z}$ be any non zero integers. The greatest common divisor of n_{1}, n_{2}, denoted by $\operatorname{gcd}\left(n_{1}, n_{2}\right)$ is the largest (positive) number d such that d divides both n_{1} and n_{2}.

Exercise. (1) $\operatorname{gcd}\left(n_{1}, n_{2}\right) \leq n_{1}, n_{2}$.
(2) $\operatorname{gcd}\left(n_{1}, n_{2}\right)=n_{1}$ if and only if n_{1} divides n_{2}.

Proposition 1.6. Suppose that $n_{1}, n_{2} \neq 0$ are any integers, and $r=n_{1}$ $\bmod n_{2}$. Then $\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(r, n_{2}\right)$

For example, to compute $\operatorname{gcd}(90,12)$ we can calculate $90=7 \cdot 12+6$ thus $6=90 \bmod 12$ and by the proposition $\operatorname{gcd}(90,12)=\operatorname{gcd}(6,12)=6$.

[^1]Proof. Let q be such that $n_{1}=q n_{2}+r$. Denote $d_{1}=\operatorname{gcd}\left(n_{1}, n_{2}\right)$ and $d_{2}=\operatorname{gcd}\left(r, n_{2}\right)$ and we want to prove that $d_{1}=d_{2}$. On one hand, d_{2} divides r and n_{2} and therefore it divides $q n_{2}+r=n_{1}$. Since $d_{1}=\operatorname{gcd}\left(n_{1}, n_{2}\right)$ is the maximal number dividing both n_{1} and n_{2} we get that

$$
\text { (I) } d_{2} \leq d_{1}
$$

On the other hand, d_{1} divides both n_{1} and n_{2} and therefor it divides $n_{1}-$ $q n_{2}=r$. Again by maximality of $d_{2}=\operatorname{gcd}\left(r, n_{2}\right)$ we have that

$$
\text { (II) } d_{1} \leq d_{2}
$$

From $(I)+(I I)$ we see that $d_{1}=d_{2}$.
Euclidean algorithm: The previous proposition suggests an algorithm to compute the greatest common divisor of two numbers $n_{1} \geq n_{2} \neq 0$:
(1) If n_{2} divides $n_{1}, \operatorname{gcd}\left(n_{1}, n_{2}\right)=n_{2}$.
(2) Otherwise, compute $r=n_{1} \bmod n_{2}$ and repeat steps (1) $+(2)$ with $n_{2} \geq r$.
For example, let us compute $\operatorname{gcd}(378,132)$:

- $378=2 \cdot 132+114($ hence $378 \bmod 132=114)$.
- $132=114+18$.
- $114=6 \cdot 18+6$.
- 6 divides 18 hence $\operatorname{gcd}(378,132)=6$.

Definition 1.7. Two integers $n_{1}, n_{2} \neq 0$ are called coprime is $\operatorname{gcd}\left(n_{1}, n_{2}\right)=$ 1.

Example 1.8. $\operatorname{gcd}(10,21)=1$ hence 10,21 are coprime. Since 3 divides both $15,18, \operatorname{gcd}(15,18)>1$ (an actually equals 3) we conclude that 15,18 are not coprime.

Proposition 1.9. Let $n, m \neq 0$ be any integers, and $d=\operatorname{gcd}(n, m)$. Then $\frac{n}{d}, \frac{m}{d}$ are coprime.

Proof. Suppose not, then $\operatorname{gcd}\left(\frac{n}{d}, \frac{m}{d}\right)=1$ and there is $k>1$ dividing both $\frac{n}{d}, \frac{m}{d}$. Then there are m_{1}, m_{2} such that $k m_{1}=\frac{n}{d}, k m_{2}=\frac{m}{d}$. It follows that $d k m_{1}=n$ and $d k m_{2}=m$, hence $d<d k$ divides both n, m which contradicts the maximality of $d=\operatorname{gcd}(n, m)$.

Theorem 1.10 (Beźout Identity). For any integers $n_{1}, n_{2} \neq 0, n_{1}, n_{2}$ are coprime, if and only if there are integers s, t such that $s n_{1}+t n_{2}=1$
Proof. Let n_{1}, n_{2} be non zero integers and denote by $d=\operatorname{gcd}\left(n_{1}, n_{2}\right)$. We need to prove an "if and only if" statement and we prove it by a double implication.
(1) \Longleftarrow : Suppose that there are integers s, t such that $s n_{1}+t n_{2}=1$. We want to prove that n_{1}, n_{2} are coprime, namely that $d=1$. Indeed, since d divides both n_{1}, n_{2} it divides $s n_{1}+t n_{2}$ and thus d divided 1 . Since d is a positive, we conclude that $d=1$.
$(2) \Longrightarrow$: Suppose that n_{1}, n_{2} are coprime i.e. $d=1$. We want to prove that there are integers s, t such that $s n_{1}+t n_{2}=1$ Let $A=\left\{a n_{1}+\right.$ $b n_{2} \mid a, b \in \mathbb{Z}$ and $\left.a n_{1}+b n_{2}>0\right\}$. Clearly, $A \subseteq \mathbb{N}$. Also, note that $A \neq \emptyset$ since for example ${ }^{2}\left|n_{1}\right|=n_{1} \cdot \operatorname{sign}\left(n_{1}\right)+n_{2} \cdot 0 \in A$. Therefore, there is a minimal number in the set A, denote $x=\min (A)>0$. By the definition of A, there are $s, t \in \mathbb{Z}$ such that $x=s n_{1}+t n_{2}$. we will prove that $x=1$ and thus proving the implication. By the division theorem, find q, r such that

$$
n_{1}=q x+r \quad 0 \leq r<x
$$

Now

$$
r=n_{1}-q x=n_{1}-q\left(s n_{1}+t n_{2}\right)=(1-q s) n_{1}+(-t) n_{2}
$$

and since $1-q s,-t$ are integers we conclude that either $r \in A$ in case $r>0$ or $r=0$. It is impossible that $r>0$ since this would means that $r \in A$ is smaller than x which is the minimal member of A. Hence $r=0$ and thus x divides n_{1}. Similarly, we prove that x divides n_{2}. Thus by the definition of $g c d, 0<x \leq d=1$. we conclude that $x=1$.

Corollary 1.11. Suppose that a divides $b \cdot c$ and $\operatorname{gcd}(a, b)=1$. Then a divides c.

Proof. Suppose that a divides $b c$ and that $\operatorname{gcd}(a, b)=1$. We want to prove that a divides c. By the Beźout identity, there are s, t such that $1=s a+t b$. Multiply the equation by c, to obtain $c=s a c+t b c$. Clearly a divides $s a c$. By the assumption of the corollary, a divides $b c$ and also $t b c$. It follows that a divides $s a c+t b c=c$.

2. PRIME NUMBERS

Definition 2.1. A natural number $p>1$ is called a prime number if the only natural numbers which divides p are $1, p$.

Example 2.2. 2,3,5,7,11,13 are prime numbers, which $4,6,8,9,10,12$ are not. Clearly, every even number beside 2 is not a prime.

Exercise. Suppose that p is a prime number and n is any integer. Then either p divides n, or p, n are coprime.

In what comes next, we will need another variation on induction called strong or complete induction.

[^2]2.1. Complete induction. Similar to regular induction, strong induction has three step: the induction base, the induction hypothesis, and the induction step. The only difference is with the induction hypothesis, in regular induction we assume for a general n that $q(n)$ holds and in the induction step we derive $q(n+1)$. In strong induction we assume that more, that for every $k \leq n q(k)$ holds and derive $q(n+1)$ from all the previous cases. Practically, the structure of a prove by complete induction/strong induction is the following:
(1) The induction base: Prove $q(0)$ (or any other base).
(2) Induction hypothesis: Assume that for a general n, for every $k \leq n$, $q(k)$ holds.
(3) Induction step: Prove $q(n+1)$ from the induction hypothesis.

As an example we shall prove the following easy claim:
Proposition 2.3. For any natural number $n>1$, there is a prime number p such that p divides n.

Proof. The induction base: For $n=2$, we have that 2 is a prime and 2 divides 2.

Induction hypothesis: Suppose that for every $1<k \leq n$, there is a prime p such that p divides k.

The induction step: Let us prove that there is a prime p dividing $n+1$. Let us split into cases:
(1) If $n+1$ is prime, define $p=n+1$, then p is a prime dividing $n+1$.
(2) If $n+1$ is not a prime, then there is $1<m<n+1$ such that m divides $n+1$. It follows that $m \leq n$ and by the strong induction hypothesis there is a prime p such that p divides m. Since p divides m and m divides $n+1$ it follows that p divides $n+1$.

Theorem 2.4. There are infinitely many primes.
Proof. Suppose toward a contradiction that there are only finitely many primes p_{1}, \ldots, p_{n}. Consider the number $m=p_{1} \cdot p_{2} \ldots \cdot p_{n}+1$. By the previous proposition there is a prime p such that p divides m. Since $p_{1}, . ., p_{n}$ list all the primes, there is $1 \leq i \leq n$ such that $p=p_{i}$. Since p_{i} divides m and also p_{i} divides $p_{1} \ldots p_{n}$, we have that p_{i} divides $m-p_{1} \ldots p_{n}=1$ hence p_{i} divides 1 , so $p_{i}=1$, contradicting the fact that p_{i} is prime.
2.2. Fundamental theorem of arithmetic. The most important feature of primes is that every natural number can be decomposed into prime. This fact will be proven later on in this sub section. Let us start with a very useful lemma, called Euclid's lemma:

Lemma 2.5 (Euclid's lemma). Let p be a prime number which divides ab. Then either p divides a or p divides b.

Corollary 2.6. If p is a prime dividing $a_{1} \ldots a_{n}$ and for every $i \neq j a_{i}, a_{j}$ are coprime, then there exists i such that p divides a_{i}

Proof. Exercise. Hint: use Euclid lemma and (regular) induction on n,
Proof. Suppose that p id a prime that divides $a b$. We wnt to prove that $(p$ divides $a) \vee(p$ divides $b)$. Let us split into cases:
(1) If p divides a, we are done.
(2) If p does not divide a, then p and a are coprime and by the Beźout identity there are integers s, t such that $1=s a+t p$. Multiply by b the equation, then $b=s a b+t p$. Since p divides both $s a b$ and $t p$, it also divides b, as wanted.

Theorem 2.7 (The fundamental theorem of arithmetics). Every natural number $x>1$ can be decomposed uniquely to a product of prime numbers. Formally, there exists $p_{1}, . ., p_{n}$ distinct primes and powers k_{1}, \ldots, k_{n} such that $x=p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}$, moreover, if x admits another decomposition $x=q_{1}^{r_{1}} \ldots q_{m}^{r_{m}}$ then $\left\{p_{1}, \ldots, p_{n}\right\}=\left\{q_{1}, \ldots, q_{k}\right\}$ and if $p_{i}=q_{j}$ then $k_{i}=r_{j}$.

Proof. Let $x>1$ be a natural number. This is an existence and uniqueness proof.
(1) Existence: Exercise. Hint: Use strong induction.
(2) Uniqueness: We will prove inductively on x, that x admits a unique prime decomposition.

The induction base: For $x=2$, since 2 is the minimal prime, there cannot be a factorization of 2 into primes beside $2=2$

The induction hypothesis: suppose that for every $k \leq x-1$, there is a unique factorization into primes.

The induction step: Let us prove that x has a unique factorization into primes. Indeed, suppose that

$$
q_{1}^{r_{1}} \ldots q_{m}^{r_{m}}=x=p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}
$$

are two factorizations of x. Clearly p_{1} divides the righthand side. Hence it divides $q_{1}^{r_{1}} \ldots q_{m}^{r_{m}}$. Since for $i \neq j, q_{i}^{r_{i}}$ and $q_{j}^{r_{j}}$ are coprime, by Euclid's lemma we conclude that there is i such that p_{1} divides $q_{i}^{r_{i}}$. It follows that there is m such that $p_{1} m=q_{i}^{r_{i}}$

3. The existence of irrational numbers

Claim 3.0.1. Every rational number $q=\frac{m}{n} \neq 0$ can be represented as $q=\frac{m^{\prime}}{n^{\prime}}$, where n^{\prime}, m^{\prime} are coprime ${ }^{3}$.

[^3]Proof. Let $n, m \neq 0$ be any integers and let $d=\operatorname{gcd}(n, m)$. By Proposition 1.9, $\frac{n}{d}, \frac{m}{d}$ are coprime. Moreover,

$$
\frac{m}{n}=\frac{\frac{m}{d}}{\frac{n}{d}}
$$

so we can let $m^{\prime}=\frac{m}{d}$ and $n^{\prime}=\frac{n}{d}$ to witness the theorem.
Theorem 3.1. $\sqrt{2}$ is irrational.
Proof. Suppose toward a contradiction that $\sqrt{2}$ is rational. Then there are coprime integers n, m such that $\sqrt{2}=\frac{m}{n}$. It follows that $2=\frac{m^{2}}{n^{2}}$ and $n^{2} 2=m^{2}$, hence m^{2} is even. It follows that m is even (why? prove it!) so there is k such that $m=2 k$ and $n^{2} 2=(2 k)^{2}=4 k^{2}$. dividing the equation by 2 we have that $n^{2}=2 k^{2}$, and by the same reasoning n should also be even. However, this is a contradiction to the choice of n, m being coprime on one hand and both even on the other hand.
Exercise. Prove that $\sqrt{18}$ is irrational.
Proof. Suppose otherwise that $\sqrt{18}$ is rational, then

$$
\sqrt{18}=\sqrt{9 \cdot 2}=\sqrt{9} \sqrt{2}=3 \sqrt{2}
$$

It follows that $\sqrt{2}=\frac{\sqrt{18}}{3}$. Since fraction of rational numbers is rational we conclude that $\sqrt{2}$ is rational, contradiction.

[^0]: Date: October 21, 2022.

[^1]: ${ }^{1}$ This symmetry occurs when the assumptions on r_{0}, r_{1} are identical and therefore we can simply repeat the proof switching between r_{0}, r_{1}.

[^2]: ${ }^{2}\left|n_{1}\right|$ denoted the absolute value of n_{1} and $\operatorname{sign}\left(n_{1}\right)=1$ in case $n_{1}>0$ and $\operatorname{sign}\left(n_{1}\right)=$ -1 if $n_{1}<0$

[^3]: 3^{3} the fraction $\frac{m^{\prime}}{n^{\prime}}$ is called a reduced fraction.

