
MATH 215: LECTURE 4- MORE ON NUMBER THEORY

TOM BENHAMOU
UNIVERSITY OF ILLINOIS AT CHICAGO

The purpose of this lecture is to provide more advanced and complex
proofs which appears in number theory.

1. Basic theorems in Number theorey

1.1. The division theorem. One of the most basic theorems in Number
theory is the division theorem. It is an example of an existence and unique-
ness theorem.

Remark 1.1. Uniqueness of a property means that there are no two distinct
object with that property. So in order to prove uniqueness, we usually take
two objects with the property and prove that they are not distinct i.e. they
are equal.

Theorem 1.2. For any integers n,m, such that m > 0 there exist unique
integers r, q such that:

n = q ·m + r, 0 ≤ r < m

q is called the quotient and r is called the remainder.

Proof. Let n,m be integers and suppose that m > 0. Proving existence and
uniqueness are two different tasks, hence we split the proof into two parts:

(1) Existance: We want to prove that there exist natural numbers k, r
such that n = km + r and 0 ≤ r < m. For this, consider the set
S = {n − am | a ∈ Z, and n − am ≥ 0}. Clearly S ⊆ N, and we
claim that S 6= ∅.
(a) If n ≥ 0, then for a = 0 we hanve that n = n− am ∈ S, hence

S 6= ∅.
(b) If n < 0, we let a = n. Since m ≥ 1, we conclude that 1−m ≤ 0

and:

n− am = n− nm = n(1−m) ≥ 0

So n− am ∈ S and S 6= ∅.
Now we need to use the feature of the natural numbers we discussed
in the previous chapter, that every non-empty set of natural numbers
has a minimal element. Denote by r = min(S). In particular r ∈ S
so there is q such that n − qm = r and n = qm + r. We still need
to prove that 0 ≤ r < m. Since r ∈ S ⊆ N, we have that r ≥ 0.
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To see that r < m, suppose toward a contradiction that r ≥ m and
denote by r′ = r − m. Then r > r′ ≥ 0, since r ≥ m ≥ 0. Also
r′ = r −m = n − qm −m = n − (q + 1)m, hence r′ ∈ S. This is a
contradiction to the minimality of r.

(2) Uniqueness: To prove uniqueness we assume that r0, q0 and r1, q1
both satisfy the property of the theorem, namely

n = q0m + r0, n = q1m + r1, 0 ≤ r0, r1 < m

and we need to prove that q0 = q1, r0 = r1. we conclude that
q0m + r0 = q1m + r1 Let us split into cases:
(a) If r0 ≤ r1, then (q0− q1)m = r1− r0 ≥ 0. Now 0 ≤ r1− r0 < m

and therefore q0−q1 must be a natural number. Assume toward
a contradiction the q0−q1 ≥ 1, then m > r1−r0 = (q0−q1)m ≥
m, contradiction. Hence q0 − q1 = 0 and q0 = q1. Also we
conclude that r1 − r0 = 0 and therefore r1 = r0.

(b) The case r1 ≤ r0 is symmetric.1

�

Definition 1.3. Let n be any integer and m > 0. We denote by n mod m
the remainder 0 ≤ r < m of the division of n by m.

Definition 1.4. We say that n1 and n2 are congruent modulo m if

n1 mod m = n2 mod m,

and we denote this by n1 ≡ n2 mod m.

Exercise. Prove the following statements:

(1) For any integers n1, n2 and m > 0 n1 ≡ n2 mod m if and only if
n1 − n2 is divisible by m.

(2) For every integers n and m > 0, n ≡ (n mod m) mod m

1.1.1. Greatest common divisor. Among the most useful definitions in num-
ber theory is the definition of the greatest common divisor of two integers:

Definition 1.5. Let n1, n2 ∈ Z be any non zero integers. The greatest
common divisor of n1, n2, denoted by gcd(n1, n2) is the largest (positive)
number d such that d divides both n1 and n2.

Exercise. (1) gcd(n1, n2) ≤ n1, n2.
(2) gcd(n1, n2) = n1 if and only if n1 divides n2.

Proposition 1.6. Suppose that n1, n2 6= 0 are any integers, and r = n1

mod n2. Then gcd(n1, n2) = gcd(r, n2)

For example, to compute gcd(90, 12) we can calculate 90 = 7 · 12 + 6 thus
6 = 90 mod 12 and by the proposition gcd(90, 12) = gcd(6, 12) = 6.

1This symmetry occurs when the assumptions on r0, r1 are identical and therefore we
can simply repeat the proof switching between r0, r1.
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Proof. Let q be such that n1 = qn2 + r. Denote d1 = gcd(n1, n2) and
d2 = gcd(r, n2) and we want to prove that d1 = d2. On one hand, d2 divides
r and n2 and therefore it divides qn2 + r = n1. Since d1 = gcd(n1, n2) is the
maximal number dividing both n1 and n2 we get that

(I) d2 ≤ d1

On the other hand, d1 divides both n1 and n2 and therefor it divides n1 −
qn2 = r. Again by maximality of d2 = gcd(r, n2) we have that

(II) d1 ≤ d2

From (I) + (II) we see that d1 = d2. �

Euclidean algorithm: The previous proposition suggests an algorithm
to compute the greatest common divisor of two numbers n1 ≥ n2 6= 0:

(1) If n2 divides n1, gcd(n1, n2) = n2.
(2) Otherwise, compute r = n1 mod n2 and repeat steps (1) + (2) with

n2 ≥ r.

For example, let us compute gcd(378, 132):

• 378 = 2 · 132 + 114 (hence 378 mod 132 = 114).
• 132 = 114 + 18.
• 114 = 6 · 18 + 6.
• 6 divides 18 hence gcd(378, 132) = 6.

Definition 1.7. Two integers n1, n2 6= 0 are called coprime is gcd(n1, n2) =
1.

Example 1.8. gcd(10, 21) = 1 hence 10, 21 are coprime. Since 3 divides
both 15, 18, gcd(15, 18) > 1 (an actually equals 3) we conclude that 15, 18
are not coprime.

Proposition 1.9. Let n,m 6= 0 be any integers, and d = gcd(n,m). Then
n
d ,

m
d are coprime.

Proof. Suppose not, then gcd(nd ,
m
d ) = 1 and there is k > 1 dividing both

n
d ,

m
d . Then there are m1,m2 such that km1 = n

d , km2 = m
d . It follows that

dkm1 = n and dkm2 = m, hence d < dk divides both n,m which contradicts
the maximality of d = gcd(n,m). �

Theorem 1.10 (Beźout Identity). For any integers n1, n2 6= 0, n1, n2 are
coprime, if and only if there are integers s, t such that sn1 + tn2 = 1

Proof. Let n1, n2 be non zero integers and denote by d = gcd(n1, n2). We
need to prove an “if and only if” statement and we prove it by a double
implication.

(1) ⇐=: Suppose that there are integers s, t such that sn1+tn2 = 1. We
want to prove that n1, n2 are coprime, namely that d = 1. Indeed,
since d divides both n1, n2 it divides sn1 + tn2 and thus d divided 1.
Since d is a positive, we conclude that d = 1.
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(2) =⇒: Suppose that n1, n2 are coprime i.e. d = 1. We want to prove
that there are integers s, t such that sn1 + tn2 = 1 Let A = {an1 +
bn2 | a, b ∈ Z and an1 + bn2 > 0}. Clearly, A ⊆ N. Also, note that
A 6= ∅ since for example2 |n1| = n1 ·sign(n1)+n2 ·0 ∈ A. Therefore,
there is a minimal number in the set A, denote x = min(A) > 0.
By the definition of A, there are s, t ∈ Z such that x = sn1 + tn2.
we will prove that x = 1 and thus proving the implication. By the
division theorem, find q, r such that

n1 = qx + r 0 ≤ r < x

Now

r = n1 − qx = n1 − q(sn1 + tn2) = (1− qs)n1 + (−t)n2

and since 1 − qs,−t are integers we conclude that either r ∈ A in
case r > 0 or r = 0. It is impossible that r > 0 since this would
means that r ∈ A is smaller than x which is the minimal member
of A. Hence r = 0 and thus x divides n1. Similarly, we prove that
x divides n2. Thus by the definition of gcd, 0 < x ≤ d = 1. we
conclude that x = 1.

�

Corollary 1.11. Suppose that a divides b · c and gcd(a, b) = 1. Then a
divides c.

Proof. Suppose that a divides bc and that gcd(a, b) = 1. We want to prove
that a divides c. By the Beźout identity, there are s, t such that 1 = sa+ tb.
Multiply the equation by c, to obtain c = sac + tbc. Clearly a divides sac.
By the assumption of the corollary, a divides bc and also tbc. It follows that
a divides sac + tbc = c. �

2. Prime numbers

Definition 2.1. A natural number p > 1 is called a prime number if the
only natural numbers which divides p are 1, p.

Example 2.2. 2,3,5,7,11,13 are prime numbers, which 4,6,8,9,10,12 are not.
Clearly, every even number beside 2 is not a prime.

Exercise. Suppose that p is a prime number and n is any integer. Then
either p divides n, or p, n are coprime.

In what comes next, we will need another variation on induction called
strong or complete induction.

2|n1| denoted the absolute value of n1 and sign(n1) = 1 in case n1 > 0 and sign(n1) =
−1 if n1 < 0
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2.1. Complete induction. Similar to regular induction, strong induction
has three step: the induction base, the induction hypothesis, and the induc-
tion step. The only difference is with the induction hypothesis, in regular
induction we assume for a general n that q(n) holds and in the induction
step we derive q(n + 1). In strong induction we assume that more, that
for every k ≤ n q(k) holds and derive q(n + 1) from all the previous cases.
Practically, the structure of a prove by complete induction/strong induction
is the following:

(1) The induction base: Prove q(0) (or any other base).
(2) Induction hypothesis: Assume that for a general n, for every k ≤ n,

q(k) holds.
(3) Induction step: Prove q(n + 1) from the induction hypothesis.

As an example we shall prove the following easy claim:

Proposition 2.3. For any natural number n > 1, there is a prime number
p such that p divides n.

Proof. The induction base: For n = 2, we have that 2 is a prime and 2
divides 2.

Induction hypothesis: Suppose that for every 1 < k ≤ n, there is a
prime p such that p divides k.

The induction step: Let us prove that there is a prime p dividing n+1.
Let us split into cases:

(1) If n + 1 is prime, define p = n + 1, then p is a prime dividing n + 1.
(2) If n + 1 is not a prime, then there is 1 < m < n + 1 such that m

divides n + 1. It follows that m ≤ n and by the strong induction
hypothesis there is a prime p such that p divides m. Since p divides
m and m divides n + 1 it follows that p divides n + 1.

�

Theorem 2.4. There are infinitely many primes.

Proof. Suppose toward a contradiction that there are only finitely many
primes p1, ..., pn. Consider the number m = p1 · p2.... · pn + 1. By the
previous proposition there is a prime p such that p divides m. Since p1, .., pn
list all the primes, there is 1 ≤ i ≤ n such that p = pi. Since pi divides m
and also pi divides p1...pn, we have that pi divides m− p1...pn = 1 hence pi
divides 1, so pi = 1, contradicting the fact that pi is prime. �

2.2. Fundamental theorem of arithmetic. The most important feature
of primes is that every natural number can be decomposed into prime. This
fact will be proven later on in this sub section. Let us start with a very
useful lemma, called Euclid’s lemma:

Lemma 2.5 (Euclid’s lemma). Let p be a prime number which divides ab.
Then either p divides a or p divides b.
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Corollary 2.6. If p is a prime dividing a1....an and for every i 6= j ai, aj
are coprime, then there exists i such that p divides ai

Proof. Exercise. Hint: use Euclid lemma and (regular) induction on n, �

Proof. Suppose that p id a prime that divides ab. We wnt to prove that
(p divides a) ∨ (p divides b). Let us split into cases:

(1) If p divides a, we are done.
(2) If p does not divide a, then p and a are coprime and by the Beźout

identity there are integers s, t such that 1 = sa + tp. Multiply by b
the equation, then b = sab + tp. Since p divides both sab and tp, it
also divides b, as wanted.

�

Theorem 2.7 (The fundamental theorem of arithmetics). Every natural
number x > 1 can be decomposed uniquely to a product of prime numbers.
Formally, there exists p1, .., pn distinct primes and powers k1, ..., kn such that
x = pk11 ...pknn , moreover, if x admits another decomposition x = qr11 ...qrmm
then {p1, ..., pn} = {q1, ..., qk} and if pi = qj then ki = rj.

Proof. Let x > 1 be a natural number. This is an existence and uniqueness
proof.

(1) Existence: Exercise. Hint: Use strong induction.
(2) Uniqueness: We will prove inductively on x, that x admits a unique

prime decomposition.
The induction base: For x = 2, since 2 is the minimal prime,

there cannot be a factorization of 2 into primes beside 2 = 2
The induction hypothesis: suppose that for every k ≤ x − 1,

there is a unique factorization into primes.
The induction step: Let us prove that x has a unique factor-

ization into primes. Indeed, suppose that

qr11 ...qrmm = x = pk11 ...pknn

are two factorizations of x. Clearly p1 divides the righthand side.
Hence it divides qr11 ...qrmm . Since for i 6= j, qrii and q

rj
j are coprime,

by Euclid’s lemma we conclude that there is i such that p1 divides
qrii . It follows that there is m such that p1m = qrii

�

3. The existence of irrational numbers

Claim 3.0.1. Every rational number q = m
n 6= 0 can be represented as

q = m′

n′ , where n′,m′ are coprime3.

3the fraction m′

n′ is called a reduced fraction.
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Proof. Let n,m 6= 0 be any integers and let d = gcd(n,m). By Proposition
1.9, n

d ,
m
d are coprime. Moreover,

m

n
=

m
d
n
d

so we can let m′ = m
d and n′ = n

d to witness the theorem. �

Theorem 3.1.
√

2 is irrational.

Proof. Suppose toward a contradiction that
√

2 is rational. Then there are

coprime integers n,m such that
√

2 = m
n . It follows that 2 = m2

n2 and

n22 = m2, hence m2 is even. It follows that m is even (why? prove it!) so
there is k such that m = 2k and n22 = (2k)2 = 4k2. dividing the equation
by 2 we have that n2 = 2k2, and by the same reasoning n should also be
even. However, this is a contradiction to the choice of n,m being coprime
on one hand and both even on the other hand. �

Exercise. Prove that
√

18 is irrational.

Proof. Suppose otherwise that
√

18 is rational, then
√

18 =
√

9 · 2 =
√

9
√

2 = 3
√

2

It follows that
√

2 =
√
18
3 . Since fraction of rational numbers is rational we

conclude that
√

2 is rational, contradiction. �


